-
On the characterization of base-p number representations
Summary: We treat number representations with natural bases \(p>1\). For this, we show that for prime bases the digits of the representation \(\displaystyle {{a}_{m}}{{a}_{{m-1}}}\ldots {{a}_{n}}\ldots {{a}_{1}}{{a}_{0}}\) of a given number \(\displaystyle z\) can be characterized by means of certain binomial coefficients. The main result is as follows: provided \(\displaystyle {{a}_{n}}\) is the n-th digit of the base-p representation of \(\displaystyle z\) then the congruency \(\displaystyle \left( {\begin{array}{*{20}{c}} z \\ {{{p}^{n}}} \end{array}} \right)\ \equiv \ {{a}_{n}}\left( {\bmod p} \right)\) holds true. In addition, this statement is proved to be false in the general case of non-prime bases.
Zusammenfassung: Wir betrachten polyadische Zahldarstellungen mit natürlichen Basen \(p>1\) und zeigen, dass für Primzahlbasen \(\displaystyle p\) die entsprechenden Ziffern \(\displaystyle {{a}_{m}}{{a}_{{m-1}}}\ldots {{a}_{n}}\ldots {{a}_{1}}{{a}_{0}}\) mittels bestimmter Binomialkoeffizienten charakterisiert werden können. Für die n-te Ziffer \(\displaystyle {{a}_{n}}\) in der Darstellung von \(\displaystyle z\) zur Basis \(\displaystyle p\) besteht die Kongruenz \(\displaystyle \left( {\begin{array}{*{20}{c}} z \\ {{{p}^{n}}} \end{array}} \right)\ \equiv \left\lfloor {\frac{z}{{{{p}^{n}}}}} \right\rfloor \equiv \ {{a}_{n}}\left( {\bmod p} \right)\). Für Nichtprimzahlbasen trifft dies im Allgemeinen nicht zu.
⇒ On the characterization of base-p number representations
-
Note on the analytic representation of integer residues
Summary: We consider a general identity regarding the analytic representation of integer remainders modulo p.
Zusammenfassung: Wir betrachten eine allgemeingültige Identität zur analytischen Darstellung ganzzahliger Reste modulo p.